A pr 2 00 4 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus Alessia

نویسندگان

  • Alessia Cattabriga
  • Michele Mulazzani
چکیده

We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As notable examples, we obtain a representation of this type for all torus knots and for all two-bridge knots. Moreover, we give explicit cyclic presentations for the fundamental groups of the cyclic branched coverings of torus knots of type (k, ck + 2). Mathematics Subject Classification 2000: Primary 57M05, 20F38; Secondary 57M12, 57M25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 0 Ju l 2 00 2 ( 1 , 1 ) - knots via the mapping class group of the twice punctured torus

We develop an algebraic representation for (1, 1)-knots using the mapping class group of the twice punctured torus MCG2(T ). We prove that every (1, 1)-knot in a lens space L(p, q) can be represented by the composition of an element of a certain rank two free subgroup of MCG2(T ) with a standard element only depending on the ambient space. As a notable examples, we obtain a representation of th...

متن کامل

(1, 1)-knots via the mapping class group of the twice punctured torus

We develop an algebraic representation for ð1; 1Þ-knots using the mapping class group of the twice punctured torus MCG2ðTÞ. We prove that every ð1; 1Þ-knot in a lens space Lðp; qÞ can be represented by the composition of an element of a certain rank two free subgroup of MCG2ðTÞ with a standard element only depending on the ambient space. As notable examples, we obtain a representation of this t...

متن کامل

2 4 O ct 2 00 5 Representations of ( 1 , 1 ) - knots

We present two different representations of (1, 1)-knots and study some connections between them. The first representation is algebraic: every (1, 1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG2(T ). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω : PMCG2(T ) → MCG(T ) ∼= SL(2, Z), which is a free group of...

متن کامل

All strongly-cyclic branched coverings of (1, 1)-knots are Dunwoody manifolds

We show that every strongly-cyclic branched covering of a (1, 1)knot is a Dunwoody manifold. This result, together with the converse statement previously obtained by Grasselli and Mulazzani, proves that the class of Dunwoody manifolds coincides with the class of stronglycyclic branched coverings of (1, 1)-knots. As a consequence, we obtain a parametrization of (1, 1)-knots by 4-tuples of intege...

متن کامل

Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups

We study the connections among the mapping class group of the twice punctured torus, the cyclic branched coverings of (1, 1)-knots and the cyclic presentations of groups. We give the necessary and sufficient conditions for the existence and uniqueness of the n-fold stronglycyclic branched coverings of (1, 1)-knots, through the elements of the mapping class group. We prove that every n-fold stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004